
Arnold Sommerfeld Center for Theoretical Physics Prof. Dr. S. Rulands
Ludwig-Maximilians-Universität München A. Hashtroud, Dr. R. Mukhamadiarov

Stochastic simulation of active Brownian motion

Brownian motion underlies many biophysical processes and it is the fundamental building
block for the theory of stochastic processes. Its out-of-equilibrium counterpart, active
Brownian motion, is a theoretical model for swimming bacteria. Such bacteria convert
chemical energy into rotational motion of protein bundles. This rotation gives rise to a
kinematic force that propels the bacterium forward. In this practical, we will familiarize
ourselves with the concept of stochastic differential equations and then implement stochastic
simulations of such active swimmers. By letting many of such bacteria interact with each
other we will investigate collective phenomena in groups of active swimmers.

1 Preparation before you start the practical

(a) In order to prepare for the practical, please read Sections 1.1 and 2.1.1 of the
introductory material which you can download from the web page of the practical. The
remaining sections might be helpful in case you are not familiar with statistics.

(b) On the day of the practical, you will do some coding. You can choose a programming
language of your choice, such as Python. The coding we will do is not difficult, but in
case you do not have prior experience with programming please familiarize yourself with
the basics of Python or Matlab.

(c) You will be most flexible if you use your own laptop for programming. If you cannot
bring you own laptop please let us know in advance and we will organize access to a
computer.

2 Persistent random walk of a single particle

We will begin by implementing a simple simulation of a single swimmer undergoing active
Brownian motion.

(a) Use Python, Matlab, C++, or any language of your choice to implement a bacterial
swimmer in two spatial dimensions. To this end, we denote the position of the swimmer
by x⃗, its velocity by v0 and the angle of its movement by θ. Then, at each time step of
the simulation, we update the position of the swimmer according to

x⃗(t + ∆t) = x⃗(t) + ∆t v0 n⃗(t), (1)

where the vector n⃗ is a unit vector pointing in the direction of movement of the swimmer.
It follows form the angle θ by

n⃗(t) = ˆ⃗e1 cos θ(t) + ˆ⃗e2 sin θ(t), (2)

where ˆ⃗e1,2 are the unit vectors. We also update the angle by adding at each time step a
random variable ξ(t) to it

θ(t + ∆t) = θ(t) +
√

∆tΓ0ξ(t). (3)

We assume that this random variable (called noise) is drawn from a Gaussian distribution
with zero mean and unit variance. We further assume that this noise is uncorrelated,
i.e.

⟨ξ(t)ξ(t′)⟩ = δ(t − t′). (4)

The parameter Γ0 is the amplitude of the noise. We recommend that you use the following
parameter values: θ(0) = 0, x⃗(0) = 0, ∆t = 0.05, Γ0 = 0.1, and v0 = 1.

Question: Why does the prefactor of the noise term in Eq. (3) scale with the square
root of ∆t?

(b) Now run the simulation you wrote 100 times and save the results. We would now
like to analyse the trajectory of the simulated swimmer. To this end, calculate the average
position as a function of time, ⟨x⃗(t)⟩, and the mean-squared displacement, ⟨x⃗(t)2⟩−⟨x⃗(t)⟩2.
The average, ⟨·⟩, is to be taken over independent simulation runs.

In a first step we would now like to check whether the simulation you wrote is correct.
To this end, compare your results to the analytical predictions that are shown below, and
plot both of them together. The analytical findings read

⟨x⃗(t)⟩ = 0, (5)

for the average position and

⟨x⃗(t)2⟩ = 2 v2
0

ω2 (ωt − 1 + e−ωt) =

2v2

0 t2 for ωt ≪ 1,

2v2
0t/ω for ωt ≫ 1.

(6)

where ω = v2
0/Γ0.

Hint: Use double logarithmic plots.

(c) How would you define the diffusion constant D, using the parameters above? Using
definition of the Péclet number, provide your interpretation of the limits in Eq. (6).

3 Brownian dynamics of a collection of interacting
particles

Now that you can be confident that your code is working so far, we can add another
layer of complexity. To this end, we will now see what happens when we put many active
particles together and let them interact.

(a) Assume now that the particles interact via some force F⃗ . How do the equations of
motion Eq. (1) and Eq. (3) change?

(b) If two particles are closer than a distance 2R, these particles should align their
direction of movement. We further assume that interactions are harmonic, such that the
force on particle i that comes from particle j with positions x⃗i and x⃗j reads

F⃗ij =

r̂ijk(2R − |x⃗i − x⃗j|) for |x⃗i − x⃗j| < 2R

0 for |x⃗i − x⃗j| ≥ 2R
. (7)

k is the repulsion strength coefficient, ˆ⃗rij = (x⃗i −x⃗j)/|x⃗i −x⃗j| is a unit vector pointing from
x⃗2 to x⃗2, and |x⃗i − x⃗j| is the Eucledian distance between the two vectors. To implement
your simulation, choose a radius R, and fill your simulation box so that the overall density
is about 10%. Use periodic boundary conditions.

(c) Run simulations for different particle densities and compute the mean squared
displacement by averaging over different particle trajectories.
Question: How do you interpret your observations?

	Preparation before you start the practical
	Persistent random walk of a single particle
	Brownian dynamics of a collection of interacting particles

